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LETTER TO THE EDITOR

Phase transitions in the classicalXY antiferromagnet on
the triangular lattice

H-J Xu and B W Southern
Department of Physics, University of Manitoba and Winnipeg Institute for Theoretical Physics,
Winnipeg, Manitoba, Canada R3T 2N2

Received 5 December 1995

Abstract. The critical behaviour of the fully frustrated classical antiferromagnet on the
triangular lattice is studied using Monte Carlo methods. Numerical evidence for separate
Kosterlitz–Thouless and Ising transitions is presented as a result of investigating the free-energy
cost to create an isolated vortex, the finite-size scaling of the spin stiffness and the finite-size
scaling of the chirality.

Frustrated two-dimensionalXY models have attracted much attention recently. Studies
of phase transitions in these models are motivated by their relevance to systems such as
arrays of Josephson junctions in an applied magnetic field [1], helimagnets [2, 3] and
discotic liquid crystals [4]. The fully frustratedXY model (FFXY) has a ground state with
continuousU(1) and discreteZ2 symmetry. The discreteZ2 symmetry implies that an
Ising-type transition occurs at a temperatureTI while the continuousU(1) symmetry should
give rise to a Kosterlitz–Thouless (KT) [5] vortex unbinding transition atTKT. The simplest
example of a fully frustratedXY system is the classical antiferromagnet on a triangular
lattice. The ground state of the system is a non-collinear spin arrangement in which the
spins on each triangle make an angle of 120◦ with one another. There are two distinct
arrangements depending on the sense of rotation of the spins around each triangle, and
each is characterized by a left or right chirality. The Ising symmetry arises due to the
two chiralities of the ground state. It is expected thatTI is higher thanTKT, but a single
transition with exponents in a different universality class cannot be ruled out.

Several Monte Carlo simulations [6–9] have been reported for theFFXY model on the
triangular and square lattice. However, no definite conclusions on the critical behaviour have
been reached. Early simulations [7] for the triangular lattice suggested a double transition
with TI > TKT, and the critical exponents associated with the Ising order parameter (the
chirality) were found to be consistent with the pure(d = 2) Ising values. Mean-field
calculations [10] as well as renormalization-group calculations [11, 12] support the idea of
a single transition withTI = TKT. Recent Monte Carlo simulations [13–16] also suggest a
single transition which belongs to a new universality class. The authors argue that previous
numerical evidence for an Ising-type transition was mainly drawn from the finite-size scaling
of the specific heat and is unreliable. The evidence for a single transition, however, is not
conclusive. Other studies on the square lattice [17, 18] find evidence for two transitions but
with scaling behaviour different from that expected for theKT and Ising transitions.
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In this letter, we report detailed Monte Carlo simulations for theFFXY model on the
triangular lattice. We provide numerical evidence for two phase transitions: aKT phase
transition at a temperature below that corresponding to the appearance of the chirality
order parameter. A similar conclusion for the square lattice has recently been reported by
Olsson [19]. We define and calculate a vorticity modulus which measures the free-energy
cost to create an isolated vortex. This providesdirect evidence for a Kosterlitz–Thouless
vortex binding–unbinding phase transition in this model. We also perform a finite-size
scaling analysis of the spin stiffness, and the quality of the fit to theKT finite-size scaling
form allows us to locate theKT transition temperature to an accuracy of less than 1%.
Finally, we investigate the finite-size scaling behaviour of the chirality and show that the
transition temperature for the chiral order is higher than that of theKT transition.

The classicalXY model with nearest-neighbour interactions is described by the
Hamiltonian

H = J
∑
i<j

Si · Sj (1)

whereSi represents a classical 2-component spin of unit magnitude, located at the sites of
a triangular lattice. In the present case, positiveJ corresponds to theFFXY model. The
ferromagneticXY model has a Kosterlitz–Thouless phase transition [20, 21] at a finite
temperature where vortices unbind. The transition is accompanied by an abrupt change in
the spin stiffness, or helicity modulus. The classical ground state of theFFXY model on the
triangular lattice has the spins oriented at 120◦ to one another. This order corresponds to one
of the two inequivalent reciprocal lattice vectorsQ = (± 4π

3 , 0). These two chiralities are
topologically distinct in theXY model since no continuous transformation can transform
one ground-state configuration into the other. This discrete degeneracy combined with
continuous rotational spin symmetry provides a rich critical behaviour for theFFXY model.

One way to unambiguously identify a defect-mediated phase transition is to calculate
the excess free energy of a free vortex. According to the originalKT argument [5], this
excess energy is zero forT > TKT and positive forT < TKT. Kawamura and Kikuchi [22]
have proposed a method to measure this energy difference using Monte Carlo simulations
with two different sets of boundary conditions. The free-energy difference gives an estimate
of the excess free energy of a single free vortex. More recently, Southern and Xu [23] have
introduced a quantity called vorticity to directly measure the free-energy cost to create an
isolated vortex in the frustrated Heisenberg model on the triangular lattice. This response
function has the advantage that it can be calculated using the usual periodic boundary
conditions.

The spin stiffness [24], or helicity modulus, is a measure of the response of the spin
system to a twist over the length of the lattice and can be calculated using the expression [23]

ρ(L) = − J

L2

∑
i<j

(êij · û)2〈Sx
i Sx

j + S
y

i S
y

j 〉 − J 2

L2T
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(êij · û)[Sx
i S

y

j − S
y

i Sx
j ]

)2〉
(2)

where êij are unit vectors along neighbouring bonds andû is the direction of the twist
in the lattice. In a similar manner, a vorticity can be defined as the response of the spin
system to an imposed twist about an axis perpendicular to the spin plane along a closed path
which encloses a vortex core. This is essentially the response of the system to an isolated
vortex and can be calculated as the second derivative of the free energy with respect to the
strength of the vortex, or winding numberm, evaluated atm = 0. We obtain the following
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expression for theXY model:

V (L) = −2J√
3
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where we have arbitrarily chosen the origin of the vortex to be at the centre of one of
the triangles near the middle of the lattice. The positions of the spins are specified using
polar coordinates(ri, φi) relative to this point. Henceri is the distance of sitei from the
vortex core andφ̂i is tangential to the circularpath in the latticepassing through sitei
and enclosing the vortex. The vorticity has been normalized by the unit cell area. Here,V

contains both a core contribution and a part which is proportional to ln(L/a). By comparing
different lattice sizes,L, we can extract the vorticity modulusv defined as follows:

V (L) = C + v ln(L/a) . (4)

To calculate the vorticity we have performed Monte Carlo (MC) simulations on lattices
of linear sizes,L = 12, 24, 36, 48, 72, 96, 144, using a Metropolis algorithm with over
relaxation [25, 26]. The first combined 1.4 × 105 MC sweeps are discarded and the next
5.6 × 105 combinedMC sweeps are used to calculateV . A typical run of sizeL = 96
requires about 36 CPU hours on an IBM RS6000 workstation.

Figure 1. (a) Raw data for the vorticityV (L), as a function ofT/J , obtained from equation (3)
using different system sizesL. (b) The vorticity modulusv(T ), as a function ofT/J , obtained
from equation (4) by comparing systems of different sizes is shown by the symbols. The
full curve is an average over all pairs. The broken curve represents the universal jump
v(T )/v(0) = 8

3π
T /J predicted by theKT theory.

Figure 1(a) shows the raw data forV (L) for various sizes and figure 1(b) shows the
vorticity modulusv as a function ofT/J , obtained by comparing sizesL1 andL2. Apart
from finite-size effects, we clearly see that the vorticity goes to zero forT > 0.51J .
Our numerical data indicates that at high temperatures there is no energy cost to create a
free vortex, while for lower temperatures the cost is proportional to lnL. We have also
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calculated the reduced stiffness,ρ(T )/ρ(0), using equation (2) for the same lattice sizes
and the results are compared to the reduced vorticity modulus,v(T )/v(0), in figure 2.
Our results for the vorticity and the spin stiffness show identical temperature dependences,
with both quantities vanishing abruptly at the same temperature. The fact that these two
response functions behave identically for theFFXY model is, presumably, due to the fact
that the spin wave and vortex degrees of freedom are uncoupled, in contrast to the situation
in the frustrated Heisenberg case [23]. Using theKT value [27] of the reduced stiffness at
the transition,ρ(T )/ρ(0) = 8

3π
T /J , we estimate thatTKT ∼ 0.50J .

Figure 2. The full curve represents the reduced vorticity
modulus,v(T )/v(0), and the symbols represent the reduced
spin stiffness,ρ(T )/ρ(0), for various sizes,L, as a function
of T/J . The broken line represents the predictions of the
Kosterlitz–Thouless (KT) theory.

Weber and Minnhagen [28] were able to locateTKT for a two-dimensional ferromagnetic
XY model to a few tenths of a per cent, using the finite-size scaling form of the spin stiffness
at theKT transition temperature. At the transition the reduced spin stiffness behaves as

ρ(L)

ρ(0)
= 8

3π

T

J

(
1 + 1

2 ln(L/L0)

)
(5)

where the parameterL0 is a constant. We choose a value ofT and fit the measured spin
stiffnessρ(L) to the aboveKT scaling form which has only the one free parameterL0. The
deviation from the fit,χKT

sq , is plotted as a function ofT/J in figure 3. One can easily see that
χKT

sq increases significantly forT larger than 0.506J and smaller than 0.496J . The position
of the minimum suggests that the transition temperature is given byTKT = (0.501±0.002)J .
The fact that theKT scaling form with only one adjustable parameter fits the stiffness data
extremely well can be taken as strong evidence that the phase transition is of theKT type.
Miyashita and Shiba [7] have previously estimatedTKT = (0.502± 0.002)J using theKT

exponent criterionη(T ) = 1
4. This agreement provides further evidence for aKT transition.

So far we have only discussed theU(1) symmetry of the model and have provided
numerical evidence of aKT transition atTKT = (0.501± 0.002)J . We now show that
our estimate of the transition temperature for chiral order is higher. The chirality on each
elementary triangleR is defined as follows (see, for example, [7]):

κ(R) = 2

3
√

3
(S2 × S1 + S3 × S2 + S1 × S3) · k̂ (6)



Letter to the Editor L137

Figure 3. χKT
sq as a function of the trial value ofTKT in units

of J .

whereS1, S2, S3 are the three spins at the corners. The chirality is normal to the spin plane
for the XY model and can take any value in the range [−1, 1]. In the ground state, the
chirality on each triangle takes the values+1 or −1 and thus resembles an Ising spin. We
have calculated〈P 2〉 for various system sizes, whereP = ∑

R κ(R)/N4 is the chirality
order, parameter andN4 is the total number of triangles. The chirality appears to develop
at a higher temperature than our estimate ofTKT.

In order to examine the critical behaviour we have used the following finite-size scaling
form [29] for the order parameterP :

〈P 2〉 = Nx
4f±(tNy) (7)

wherex = 2(β+γ )/(2β+γ ), y = 1/(2β+γ ), t is the reduced temperaturet = |T −Tc|/Tc

and the± indicates the form above and belowTc. Here β and γ are the usual critical
exponents for the order parameter and susceptibility, respectively. For each trial value of
Tc, we collapse the data using a ln–ln plot of〈P 2〉/Nx

4 againsttNy to determineβ andγ .
The sum of the quality of fits to the two scaling forms,χ I

sq, is shown as the trial function
Tc in figure 4. The quality of the fit deteriorates forT < 0.506J and T > 0.516J , and
from the minimum we estimate the critical transition temperatureTc = (0.511± 0.003)J .
Note that this estimate is close to the value of(0.513± 0.002)J obtained by Leeet al [13].
Using the location of the specific heat maximum, Miyashita and Shiba [7] obtained an
estimate for the chiral transition temperature equal to 0.513J . Our data suggests that the
Z2 transition temperature is higher thanTKT and that there are two transitions in agreement
with Miyashita and Shiba. Our fit of the chirality to the finite-size scaling forms yields the
valuesβ = 0.11± 0.03 andγ = 1.6 ± 0.3 for the critical exponents. These estimates do
not differ significantly from the pure Ising values but the error is quite large.

In summary, we have provided numerical evidence that there are two phase transitions
in the FFXY model on the triangular lattice. TheZ2 transition temperature is found to be
higher than theU(1) KT transition temperature. We have calculated a direct measure of the
excess free energy for a free vortex. This excess free-energy vanishes at high temperatures
and varies as lnL belowTKT = (0.501±0.002)J . These results provide direct evidence of a
vortex binding–unbinding mechanism for the phase transition. The vorticity shows the same
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Figure 4. χ I
sq as a function of the trial value ofTc in units

of J .

temperature variation as the spin stiffness and both quantities vanish atTKT. Furthermore,
we find that a finite-size scaling analysis of the spin stiffness data fits theKT form extremely
well at the critical temperature. Our results are consistent with the previous estimate ofTKT

by Miyashita and Shiba, using the criterionη = 1
4. On the other hand, we estimate the

chiral order transition to be at a higher temperature,Tc = (0.511±0.003)J , with exponents
which do not differ significantly from the pure Ising values. In a recent paper, Olsson [19]
studied theFFXY model on the square lattice and reached the same conclusions.

This work was supported by the Natural Sciences and Engineering Research Council of
Canada.
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[29] Xu H-J, Bergersen B and Ŕacz Z 1991J. Phys.: Condens. Matter3 4999


